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Abstract—Augmented Reality (AR) is acclaimed for its po-
tential to bridge the physical and virtual worlds. Yet, current
integration between these realms often lacks a deep under-
standing of the physical environment and the subsequent scene
generation that reflects this understanding. This research in-
troduces Sensor2Scene, a novel system framework designed to
enhance user interactions with sensor data through AR. At its
core, an AI agent leverages large language models (LLMs) to
decode subtle information from sensor data, constructing detailed
scene descriptions for visualization. To enable these scenes to be
rendered in AR, we decompose the scene creation process into
tasks of text-to-3D model generation and spatial composition,
allowing new AR scenes to be sketched from the descriptions.
We evaluated our framework using an LLM evaluator based
on five metrics on various datasets to examine the correlation
between sensor readings and corresponding visualizations, and
demonstrated the system’s effectiveness with scenes generated
from end-to-end. The results highlight the potential of LLMs
to understand IoT sensor data. Furthermore, generative models
can aid in transforming these interpretations into visual formats,
thereby enhancing user interaction. This work not only displays
the capabilities of Sensor2Scene but also lays a foundation for
advancing AR with the goal of creating more immersive and
contextually rich experiences.

Index Terms—Augmented Reality, Sensor Data Integration,
Large Language Models, Text-to-3D Generative Models, User
Interaction in AR

I. INTRODUCTION

Augmented Reality (AR) is transforming how we interact
with the world, blending the digital and physical into a
single seamless experience. As AR technology integrates into
our daily routines, its capacity to enhance our understanding
and engagement with our environment grows more evident.
People are increasingly adopting AR for various applications,
from improving everyday tasks to transforming professional
workflows, including entertainment, social interactions, and
remote working [13]. Affected fields include medicine [15],
education [14], [26], and marketing [23]. This growing accep-
tance highlights AR’s ability to bridge the gap between our
physical reality and the virtual realm.

Despite its potential, current AR implementations strug-
gle to fully integrate with the complexities of the physical
world. Today’s AR experiences, mainly confined to static,
pre-designed environments like the virtual environments of
Meta Quest [6] games or the 360-degree scenes offered by
Apple Vision Pro [3], offer limited interaction with physical

world sensors. Since current AR devices do not interact
effectively with the physical world, they do not significantly
differ from other screens like PCs and smartphones. Our
vision for AR devices will effectively fill the gap between the
physical world and digital devices. Firstly, AR can enhance
human perception and interaction, allowing for augmented
sensory experiences and a deeper environmental connection.
It also improves accessibility by making sensory information,
such as visualizing sounds for the hearing impaired, more
available. Secondly, AR can advance professional applications
and stimulate creativity. For instance, it can turn invisible
data into visual formats, aiding in data interpretation in fields
like research and industry, as seen in visualizing airflow in
aerodynamics. Moreover, AR enhances creative and artistic
expression, applying Kandinsky’s synesthetic approach to in-
troduce new creative dimensions in art and entertainment.

Achieving this goal presents three major challenges. First,
interpreting data from a wide range of sensors is challenging
due to the heterogeneity of sensor types and data formats
available. Second, natural integration of sensor data into the
user’s environment to enhance their perception is complex.
This complexity arises from the need to amalgamate various
data modalities to create new scenes - tasks at which tradi-
tional methods cannot accomplish. Third, generating scenes
from scratch is challenging. AR scenes must be adaptable,
yet traditional game engines and design tools are labor-
intensive and time-consuming, hampering prompt deployment
and limiting scalability. Acknowledging these challenges, we
leverage Large Language Models (LLMs) to help tackle these
challenges.

LLMs have shown exceptional versatility in areas such as
context understanding, summarization, creative content gener-
ation, and task planning [31]. Moreover, the recent study [30]
indicates LLMs’ capability to interpret sensor data effectively
with appropriate prompts. This capability positions LLMs as
an essential tool in overcoming the aforementioned challenges
and, therefore, bridging the gap between digital and physical
worlds. In this paper, we present an innovative framework and
methodology designed to enhance human interaction with the
physical environment through AR, leveraging the integration
of sensor data with LLMs and generative models. Our contri-
butions are as follows:
• AR Interactive Framework with Sensor Data. We pro-



pose an LLM-empowered framework, Sensor2Scene, that
visualizes sensor data in AR environments. Our framework
transforms intangible environmental data into contextually
relevant, augmented visuals, significantly enhancing users’
situational awareness and enriching their engagement with
the surrounding environment.

• AI Agent for Handling Sensor-Scene Interaction. The
Sensor2Scene framework is centered around an AI agent
that not only visualizes sensor data as AR elements but also
dynamically adapts these visualizations to reflect changes in
the environment, sensor inputs, and user preferences. Lever-
aging LLM’s decision-making and memory capabilities, our
AI agent is able to efficiently generate AR scenes with
customized experience.

• Benchmark for Sensor Interpretation and Visualization.
We developed a new benchmark on the effectiveness of
scene description from sensor input. This benchmark is used
for evaluating the capability of Sensor2Scene to provide
accurate and quality AR scenes across a variety of scenarios.

II. RELATED WORKS

The related work for this study involves two perspectives:
the interaction between IoT sensors and AR, and scene pro-
duction from data.

AR and IoT Data Interaction. Recent studies [16], [17]
have explored the integration of sensor data with Augmented
Reality (AR). They illustrate how AR can enhance the utility
of IoT sensors in creating smart, interactive environments.
These works highlight the potential synergy between AR and
IoT technologies. Here, AR serves as an intuitive interface for
users to interact with and understand data from IoT devices.
This improves user engagement and comprehension of the real
world. Further research [9], [22], [25] uses AR as a medium
for visualizing IoT sensor data. This emphasizes AR’s ability
to present intuitive visualizations that utilize IoT’s robust data
collection and communication features.

However, these studies mostly focus on conventional visual-
ization methods like numerical displays or standard charts and
graphs. They often cater to specific sensor types or application
domains. A significant gap in the existing literature is the lack
of foundational models for the integration of AR and IoT. Our
study shows that incorporating these models could extend the
versatility and depth of interactions, enabling more dynamic
and context-aware presentations.

AR Scene Generation. The potential of using AI to gener-
ate virtual content has become clear with the advancement
of text-to-image and text-to-video technologies like Stable
Diffusion [24] and Sora [20].

In our context of AR, scene and model creation is pre-
dominantly driven by text-to-3D and image-to-3D conversions.
Recent advancements in text-to-3D model generation aim to
address challenges like prolonged processing times and the
consistency in the 3D model generation. A survey highlights
the importance of using multi-view images and non-Euclidean
data, such as meshes and point clouds, to improve 3D model

Fig. 1. Sensor2Scene Framework

creation [18]. DreamFusion [21] and Magic3D [19] introduce
optimization methods that speed up the generation of high-
quality 3D mesh models and enhance their resolution. Dream-
Gaussian [28] improves processing speed with 3D Gaussian
Splatting, while MVDream [27] uses multi-view priors to
increase consistency and stability.

However, current generation techniques are primarily lim-
ited to individual objects or components, making the creation
process for each object quite time-consuming. Our work seeks
to expand these capabilities, with the goal of generating
comprehensive scenes that adapt dynamically to changes in
sensor data, thus meeting a crucial need in the AR domain.

III. SENSOR2SCENE DESIGN

We introduce Sensor2Scene, a framework designed to con-
vert sensor readings into AR scenes. The framework acquires
sensor data and environmental information from the sensor
readings and user input, then processes this data to construct
a 3D scene. This scene includes elements like visual indicators
and is then rendered onto AR headsets, merging it with the
real-world environment.

To achieve this, we developed an AI agent to interpret
sensor data and autonomously generate immersive scenes. This
agent enables the framework to operate with minimal human
intervention. As illustrated in Fig. 1, the agent carries out
two main functions: interpreting the sensor data into visible
scenes and generating the AR scenes. The AI agent comprises
two main components: Sensor Data Interpreter and Scene
Producer. It also includes additional modules to interact with
the user and the environment.

A. Scene Description Generator

LLMs have shown the capability to interpret real-world
sensor data [30]. Furthermore, the associative memory in these
AI models enables them to generate imaginary scenes from
this sensory information. Inspired by these findings, we design
our agent in the following steps:
• Data Acquisition and Preprocessing: Initially, the agent

acquires a current scene observation from the AR goggles
alongside raw sensor data from available sources. It then
proceeds to extract location information of sensors and
furniture, as well as format the raw sensor data according to
a predefined schema. This process results in a consolidated
set of metadata that includes environmental variables and
physical parameters.

• Prompt Generator Integration: With the metadata gener-
ated from the previous step, we can explicitly provide expert
knowledge in the system prompt, detailing the types of
sensors available and the characteristics of the environment.
The Prompt Generator Integration employs tailored prompt



templates for the current scenario, ensuring that the output
is both contextually relevant and rich in detail.

• Scene Description Synthesis:
Leveraging the processed prompts, the agent then embarks
on synthesizing the scene description. This description man-
ifests as a curated list of elements present in the environ-
ment, meticulously detailing objects, spatial relationships,
and other pertinent features. Each element is identified,
categorized, and described, providing a textual blueprint of
the scene. This blueprint is crucial for the subsequent phase
of the workflow, where text-to-3D model conversion occurs.
The Scene Description Generator, through its sophisticated

processing of sensor data and environmental observations, lays
the groundwork for the next stage of AR scene creation.
By translating the complexities of the physical world into
a structured and comprehensible narrative, it enables the 3D
model generator to bring these descriptions to life in three
dimensions. This synergy between components underscores
our AI agent’s innovative approach to enhancing human per-
ceptions of AR environments, minimizing human intervention
while maximizing the fidelity and immersion of the generated
scenes.

B. AR Scene Producer
The 3D Scene Producer turns scene descriptions into tan-

gible AR experiences. It uses textual descriptions to create
intricate 3D models that fill the AR environment. Its features
and functions aim to ensure that the virtual elements accurately
represent their textual descriptions and can adapt dynamically
to changes in the environment or sensor data. Below are the
core functionalities and features of this module.
Functionality.
• Text-to-3D: At its core, the 3D Scene Producer is adept

at interpreting the textual scene descriptions generated by
the preceding module. Advanced text-to-3D modeling tech-
niques transform these descriptions into precise 3D models.
This process involves identifying each element described in
the text, understanding its attributes (such as shape, size, and
texture), and then constructing a corresponding 3D object.

• Local 3D Model Modification: Recognizing the dynamic
nature of real-world environments, the module is equipped
with a 3D model modifier capability. This feature allows
for minor updates to the 3D models in response to changes
detected in sensor information or the environment. Whether
it’s adjusting the color, position, size, or orientation of an
existing model, the modifier ensures that the virtual scene
remains in harmony with the physical world, enhancing the
realism and immersion of the AR experience.

Features.
• Flexibility: The 3D Scene Producer stands out for its adapt-

ability. It can work with a variety of objects and abstract
scene components. This flexibility allows the module to
render a broad spectrum of scenes accurately, from intricate
interior settings to vast outdoor landscapes.

• Low-latency: Low-latency is crucial for rapidly changing
sensor readings, such as those from light intensity sensors.

Fig. 2. Scene Production Agent Workflow

To handle these instantaneous changes, our local 3D model
modifier can offer a swift response, modifying the input
within less than 5 seconds with local image filters.
By bridging the gap between textual scene descriptions and

their 3D realizations, the 3D Scene Producer plays a pivotal
role in the creation of immersive AR environments. Its ability
to dynamically adapt to changes and ensure compatibility
with advanced display techniques underscores the module’s
contribution to the next generation of AR technology. Through
its innovative approach to 3D scene production, this module
exemplifies the synergy between linguistic understanding and
visual representation, paving the way for more intuitive and
engaging AR experiences.

C. Additional Modules

Additional modules are integrated into the system to com-
plement the core functionalities of the AR scene generation
agent. These modules are designed to enhance the realism,
interactivity, and adaptability of the AR scenes, ensuring a
seamless and engaging user experience. Below, we detail these
modules, prioritized by their impact on the system’s overall
performance.

User Feedback Integration. To learn the user’s prefer-
ences, we leverages a context-aware architecture that incorpo-
rates user’s previous choices and decision with memory. This
establishes a dynamic feedback loop between users and the
AR environment. This loop helps two parts in the agent:
• Scene Refinement: By continuously incorporating user pref-

erences and feedback, the system adapts and refines the AR
scene in real time. This ensures that the virtual environ-
ment not only aligns with the user’s expectations but also
enhances their interaction experience by personalizing the
scene content.

• Model Fine-Tuning: User interactions and feedback provide
valuable data that contribute to the training set for ongoing



model fine-tuning. This iterative process allows the system
to learn from user behavior, improving its accuracy and
responsiveness over time, thus ensuring that the AR scenes
become progressively more immersive and aligned with user
preferences.

Digital Boundary. The Digital Boundary module is used
to make 3D scenes integrated with the user’s physical envi-
ronment. By creating constraints based on room size, object
dimensions, positions, and physical laws such as gravity, this
module guarantees that virtual elements are correctly scaled
and positioned within the space. This not only enhances the
realism of the AR experience but also prevents immersion-
breaking anomalies, such as objects floating in mid-air or
intersecting with physical barriers.

Environmental Scanning. Utilizing the camera on AR
glasses, it interprets the immediate physical environment,
mapping out space and identifying key features. This data
can then be used to enhance the accuracy of the Digital
Boundary and Scene Description Generator modules, stream-
lining the process of aligning virtual elements with the real
world. For scenarios where AR glasses are not equipped
with sophisticated environmental scanning capabilities, manual
configuration offers a flexible alternative, allowing users to
tailor the AR experience to their specific context.

In summary, our AR scene generation system integrates
the Scene Description Generator, 3D Scene Producer, and
additional modules to create immersive and interactive AR
experiences. The seamless workflow among these components,
from interpreting sensor data to producing and modifying 3D
scenes within real-world constraints, is visually summarized
in Fig. 2. This cohesive structure ensures our system delivers
a realistic and engaging AR environment, tailored to enhance
user interaction and perception.

IV. IMPLEMENTATION

In developing our system, we focused on building a func-
tional agent and visualization framework, along with selecting
optimal models for data interpretation and scene visualization.

AI Agent and Renderer for AR. Our AI agent is
constructed using LangChain [12], chosen for its universal
function call capability that simplifies task sequencing with
LLMs. This streamlines processes from sensor data inter-
pretation to AR visualization. For rendering AR scenes, we
integrated WebXR [5] with three.js [7], ensuring a cross-
platform, lightweight solution for immersive AR experiences.

LLM and 3D Generator. For LLM tasks, we tested GPT-
3.5 [1], [11] and GPT-4 [2], [8], selecting them based on
their ability to generate accurate scene descriptions. Dream-
Gaussian [28], MVDream [27], and Genie [4] are selected
for text-to-3D conversion due to their speed advantage over
other models, critical for our system settings. Our system can
operate on a single server equipped with 24GB of GPU RAM
for scene production and can render at over 90 FPS on Quest 3.

V. PRELIMINARY EVALUATION

In our evaluation framework, a critical aspect we assess is
the Scene Production Quality, which encompasses both the
quality of generated scene descriptions and the fidelity of the
produced 3D scene. This subsection provides a preliminary
examination of these modules.

A. Scene Description Benchmark

We first evaluate our Scene Description Generator, which
is the foundation for the following modules. The quality
assessment of scene descriptions presents a unique challenge
due to its inherently subjective nature. This subjectivity raises
questions about the credibility of a manual scoring approach
that relies solely on surveys, as it may be prone to biases and
inconsistencies. To this end, we have implemented a bifurcated
approach to evaluation that integrates scores derived from
surveys and a systematic examination of schematic evaluation.

The goal of the scene description is to ensure a comprehen-
sive understanding and interpretation of sensor data, capturing
all critical attributes without omission. To achieve this, we
meticulously designed our evaluation criteria for the LLM,
focusing on several key aspects as following:
1. Specificity: Measures the precision of descriptions, empha-

sizing detail and minimizing ambiguity.
2. Fidelity: Evaluates how accurately descriptions match sen-

sor data, with deductions for inaccuracies and unnecessary
embellishments.

3. Integration: Accesses the innovation and effectiveness for
incorporating diverse sensor data into AR environment.

4. Utilization: Examines the application of sensor data in
augmenting the AR experience, emphasizing relevance and
utility over mere presence.

5. Coherence: Evaluates the contextual naturalness of de-
scriptions, ensuring sensor data is woven into the narrative
in a way that feels inherent and fitting.

Environmental Dataset. Two public sources [10], [29] and
an additional dataset collected by ourselves, referred to as
the Self-Collected Environmental Dataset (SCE), are used in
this benchmark. The public dataset from [10] includes mea-
surements from four indoor environments: bedroom, kitchen,
living room, and master bedroom, capturing data across four
sensing modalities: humidity, pressure, light intensity, and
temperature. The dataset in [29] encompasses data from
two locations—gym and living room—with measurements in
humidity, pressure, and temperature. There are four more
sensing modalities contained in SCE—CO2, VOC, PM2.5, and
wind speed—targeting environmental conditions at a subway
station.

As mentioned, our evaluation methodology for the scene
descriptions takes both an automated evaluator using the LLM
and human judgment across five distinct metrics. We selected
samples from each dataset, structuring the sensor data in
JSON format. These samples are then processed by the scene
description generator. The LLM evaluator determines scores
ranging from 1 to 5 for each metric, and then we repeat



TABLE I
DETAIL OF LLM EVALUATOR AND MANUAL SCORE ON TEXT GENERATED

FROM SCENE DESCRIPTOR.

LLM Evaluator Manual ScoreDataset Specificity Fidelity Integration Utilization Coherence Avg.
BDL 4.45 4.67 4.19 4.53 4.16 4.61 4.53

kjgrct2yn3.3 4.75 4.78 3.83 4.71 3.85 4.44 4.20
SCE 4.67 4.76 4.35 4.88 4.33 4.62 4.31

Prompt: 
You are a sophisticated assistant designed to create augmented 
reality scene descriptions. These descriptions are customized to the 
user's current circumstances (environment, sensor readings) and 
personal preferences. Your main role is to produce detailed textual 
depictions of potential scenes that the data could represent.
Your descriptions should include specific objects with
- a clear and concise description of the scene
- the objects in the scene with their properties (e.g., size, color, 
shape, position, orientation, texture, etc.)
- the relationships between the objects (e.g., distance, direction, etc.)

Remember, the goal is to help users visualize the invisible data 
collected by sensors in a manner that is not only accurate and 
informative but also engaging and immersive, bridging the gap 
between raw data and human experience through the power of AR.

Fig. 3. Prompt for Generating Scene Descriptions

this process 30 times for each dataset. As shown in Table I,
our Scene Description Generator exhibits commendable per-
formance in terms of Fidelity and Utilization, signifying its
proficiency in interpreting and incorporating the majority of
sensor data. On the other hand, relatively lower scores in
Integration and Coherence highlight challenges faced by the
LLM in accurately mapping sensor data to tangible real-world
entities, thereby affecting the visualization quality, and hence
this motivates us to incorporate human feedback to improve
the scene description.

B. Quality of Generated AR Scenes

Figure 4 showcases a scene generated for the Meta Quest 3.
This scene was created in an office in Hong Kong, following
the prompt result (Figure 3) and sensor readings. The scene
incorporates data collected from temperature, humidity, noise
level, and air quality sensors. The scene description generator
signifies the moisture condition with a moist window, the
office noise with a large trumpet, and the good air quality
with a plant. An online demo is available at https://t.ly/wep7p
and can be experienced immersively using AR goggles.

We evaluated the versatility using benchmark data, cover-
ing various locations and sensor settings. Figure 5 displays
three example scenes created by Sensor2Scene. The figures
are rendered with Blender to depict the AR environment.
From these scenes, it’s apparent that Sensor2Scene accurately
interprets sensor inputs in relation to the environment. For
example, it signifies humidity in the countryside with a pond.
In Dubai’s desert environment, it uses a plant to symbolize
room humidity.
Evaluation of 3D Model Generation Quality. The quality
of 3D models generated from textual descriptions is paramount
for an immersive user experience in augmented reality. These
models’ visual accuracy, texture detail, and overall realism
significantly impact user engagement and perception. In our

Fig. 4. Real-world Demonstration, AR Scene Generated from Sensor
Readings, Screenshot from Meta Quest 3. The sensor is reading in a moist,
noisy office in Hong Kong. Scene description: Illustrate the high humidity with
a window in the office showing condensation. The window is slightly fogged
up, with tiny droplets of water visible, indicating the moist environment.
A large, artistically crafted trumpet or horn-shaped sculpture mounted on a
prominent wall in the office indicates the noise levels. A large, lush spider
plant or peace lily is prominently displayed, indicating good air quality.

(a) Kansas - Fall (b) Dubai - Summar (c) Iceland - Winter

Fig. 5. Scenes Generated from Sensor Readings. (a) Kansas countryside
monitored with temperature, humidity, and motion sensors. Scene: a holo-
graphic water lily in a small digital pond; a series of small, playful holographic
chickens that roam around the coop area; and a tree with leaves that change
color based on the air quality index. (b) Dubai indoor office monitored with
temperature, humidity, and motion sensors. Scene: a large, interactive wall
canvas that changes color based on the temperature; a small, delicate wind
chime hangs near the patio door; a holographic plant that sits on the kitchen
counter; and dynamic footprints leading towards the coop. (c) Iceland’s room
in the winter monitored with temperature, humidity, and light sensors. Scene: a
virtual fireplace that visually represents the room’s chilly temperature; a series
of small, dormant holographic foxes; and a dynamic sun icon that adjusts its
brightness and size based on the light levels.

preliminary evaluation, we examined the models for these
attributes to determine their effectiveness in rendering realistic
AR scenes.

Our findings indicate that while the open-source models
DreamGaussian [28]and MVDream [27] exhibit potential, they
tend to produce models with less detailed textures unless their
parameters are finely tuned for specific scenarios. In contrast,
the online interface Genie [4] demonstrates a more consistent
ability to interpret complex text descriptions, successfully cap-
turing and rendering intricate element details more effectively
than the other models evaluated. This comparative analysis
underscores the importance of model selection in the context
of text-to-3D conversion for achieving high-quality, realistic
AR experiences.
Element Placement Accuracy. Accurate object placement
is essential for an immersive AR experience. We assess ele-
ment placement within the AR environment by measuring the



alignment of virtual objects with their intended locations and
evaluating any overlapping that may occur. Our observations
indicate that GPT models [1], [2] can understand the spatial
placement of individual objects. For instance, they recognize
that fans should hang from the roof while chairs belong on the
ground. However, these models struggle to detect collisions
between objects. In our evaluation, we found instances of
object collision in the scene (3 out of 13). This issue can
be addressed with future collision detection solutions.

This preliminary evaluation of Scene Production Quality
aims to verify that our system accurately interprets envi-
ronmental data and effectively translates these interpretations
into AR experiences. Through this initial assessment, we
seek to pinpoint both the strengths and potential areas for
enhancement within our system, setting a foundation for its
future refinement.

C. Preliminary User Study

In our preliminary user study, participants assessed the AR
scene created by our AI agent, comparing the experience with
that of traditional sensor screens. They evaluated the models
on visual appeal, intuitiveness, and immersion. While the feed-
back highlighted strengths in immersion and intuitiveness of
the sensor data interaction, it also recommended improvements
in the details of the 3D models and enhancing environmental
interaction by creating dynamic objects in the scene.

VI. USE CASES AND APPLICATIONS

In our exploration of AR applications, we identify two
core domains where our system exhibits significant potential:
enhancing human sensory experiences and advancing profes-
sional and creative practices.

Firstly, our system can significantly augment human sen-
sory interactions, particularly beneficial for accessibility. For
example, visualizing sound for the deaf transforms abstract
auditory information into visual representations, facilitating
communication and interaction. This application not only
showcases the technological prowess of our system but also its
profound societal impact, making environments more inclusive
and engaging.

Secondly, in professional contexts, such as aerodynamics,
our system can visualize complex data like airflow in an
intuitive manner. This real-time visualization aids engineers
in understanding and optimizing designs more efficiently,
showcasing the system’s impact on accelerating innovation.
Similarly, in the arts, our system enables the creation of
immersive experiences that translate sounds or emotions into
visual forms, expanding creative boundaries and offering new
artistic expressions.

VII. DISCUSSION AND FUTURE WORK

In the process of developing and evaluating our AR sys-
tem, we have encountered several limitations and identified
potential directions for future research. Our current system
generates scenes using individual meshes, which presents two
main limitations: limited mesh quality and inconsistencies

in placement and style. These issues can detract from the
immersive experience and realism of the AR environment.
Our future work aims to address these limitations and explore
new methodologies for enhancing AR scene generation. Two
promising areas of research include:

Comprehensive Evaluation on Generation Quality and System
Efficiency. We will expand the preliminary evaluation to a
comprehensive assessment that includes complete user studies
and latency evaluations for each module. Currently, processing
prompts and text-to-3D generation take between 3 seconds and
5 minutes for end-to-end scene production.

Enhanced Scene Generation through Text-to-Video and 3D
Gaussian Splatting. Leveraging text-to-video technology, we
aim to generate comprehensive videos showcasing multiple
views (20 to 200) of a static scene. These videos will then
be processed using 3D Gaussian Splatting, a technique that
transforms the video into a Gaussian representation suitable
for AR integration. This approach not only promises to bypass
the issues associated with individual meshes by generating
the entire scene in a unified manner but also ensures higher
visual fidelity. The application of 3D Gaussian splatting is
particularly exciting for its potential to accurately simulate
complex visual effects such as lighting, reflection, and re-
fraction. Moreover, it offers improved handling of transparent
objects like fog, smoke, and clouds, thus enhancing the realism
and depth of AR scenes.

Scene-to-Scene Augmentation. Recognizing the limitations in-
herent in relying solely on textual descriptions for environment
and sensor data, we plan to introduce scene-to-scene augmen-
tation. This technique will utilize the 3D scene captured by the
AR headset, combined with sensor data, to create an enriched
augmented view. This approach aims to mitigate the issue of
missing information during scene extraction, providing a more
comprehensive and accurate representation of the physical
environment.

VIII. CONCLUSION

In this study, we introduced Sensor2Scene, a system frame-
work designed to enable user interaction with sensor data via
augmented reality. We developed an AI agent utilizing multiple
language models to understand the implicit messages from
sensor readings and produce tangible scenes. Sensor2Scene
shows promising results based on a joint scoring of manual
and LLM evaluator under a set of rubrics. We demonstrated a
few examples on visualizing the sensor data in the real world
with this framework.

This work motivates further research on leveraging foun-
dation models for the interpretation of IoT sensor data. Fur-
thermore, the adoption of large language models is helpful
in converting these interpretations into visual information,
thereby enhancing user interaction. This study represents an
initial effort in this domain. Currently, our testing scope is
limited, but we aim to expand it in the follow-up research.
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