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Abstract
The rising demand for customized sensor systems, such as wildlife
and urban monitoring, underscores the need for scalable, AI-driven
solutions. The Model Context Protocol (MCP) enables large lan-
guage models (LLMs) to interface with external tools, yet lacks
automated sensor tool generation. We propose SensorMCP, a novel
MCP server framework that enables LLMs to dynamically generate
and operate sensor tools through a tool-language co-development
pipeline. Our contributions include: (1) a SensorMCP architecture
for automated tool and language co-evolution, (2) an automated
sensor toolbox generating tailored tools, and (3) language assets
producing tool descriptions and linguistic modules. A preliminary
evaluation using real-world zoo datasets demonstrates the practical-
ity and efficiency of SensorMCP, achieving up to 95% tool success
rate in scenarios like animal monitoring. This work advances sen-
sor systems by pioneering the co-evolution of LLMs and sensor
tools, offering a scalable framework for customized sensing in mo-
bile systems. The source code and dataset are publicly available at
https://sensormcp.github.io/sensor-mcp/.

CCS Concepts
• Computer systems organization→ Sensor networks; • Com-
puting methodologies→ Artificial intelligence.
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1 Introduction
The rapid expansion of sensor-driven applications, from wildlife
conservation to smart infrastructure, has heightened the demand
for customized sensor systems tailored to specific use cases. For
example, monitoring endangered wildlife, such as tigers and lions,
in dense jungle environments requires smart cameras with precise
motion detection and low-light capabilities, while IoT deployments
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[User] Can you help me build a 
sensor system to monitor city 
environmental conditions?

[User] Can you assist with 
creating a camera with sensors 
to track my cat’s movements?

[User] Can you generate a 
sensor-based solution to 
monitor wildlife activity?

Alert: PM2.5 spike 
— 135 µg/m³

Target: Tiger – 
Detected

Pet detected 
at bowl

Figure 1: SensorMCP enables LLM agents to dynamically
generate and operate context-aware sensor tools for diverse
real-world applications.
for environmental sensing demand adaptable temperature or hu-
midity monitors suited to urban or rural contexts. These scenarios
underscore a critical need for sensor systems that can be rapidly
configured to meet diverse domain-specific requirements and hard-
ware constraints. However, developing such systems remains labor-
intensive, often requiring manual design of software and tools for
each sensor type and application use case, limiting scalability and
flexibility. This challenge is further complicated by diverse sensor
hardware (cameras, thermometers, motion detectors), the demands
of real-time data processing, and the need for specialized configura-
tions. Traditional approaches, which rely on manual tuning or fixed
software stacks, lack the flexibility needed for new applications.

Recent advances in large language models’ (LLMs) ability to
interact with basic operational tools present an opportunity to
simplify sensor system customization. LLMs are particularly good
at understanding natural language commands, making complex
systems easier to control. The Model Context Protocol (MCP) [3]
enhances this capability through an open, standardized framework
that enables LLMs to dynamically invoke external tools. Using in-
terfaces like JSON-RPC via stdio or HTTP, MCP allows LLMs to
call functions, such as querying APIs or controlling devices, with
structured inputs and outputs. This protocol powers applications
like code interpreters [32] and application operation [1], demon-
strating its potential to bridge AI and external systems. Some MCP
tools even enable the operation of sensor systems like Home Assis-
tant [24]. However, these implementations remain general-purpose
and lack optimization for custom sensor systems. They neither
support automated generation of sensor-specific tools nor incorpo-
rate semantic understanding of sensor data, such as distinguishing
wildlife movements, like those of tigers or lions, from background
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noise or interpreting time-series environmental signals. Addition-
ally, they cannot build processors for specific user requirements,
like tracking pet feeding frequency. As a result, integrating LLM-
generated tools into physical systems still demands substantial
manual effort.

This gap motivates our central research question: Can we enable
the LLM agents to dynamically generate and operate sensor tools tai-
lored to specific needs? Addressing this question entails several chal-
lenges. First, automating tool creation for diverse sensor hardware,
ranging from cameras to environmental sensors, requires a flexible,
scalable pipeline. Second, LLMs must understand sensor-specific
contexts, such as interpreting image data for wildlife detection or
time-series signals for environmental trends, to generate relevant
tools. Finally, integrating these tools seamlessly into the current
MCP client-server model demands a robust processing framework
and flexible adaptability.

To address these challenges, we propose SensorMCP, an in-
novative MCP server framework that empowers LLMs to create
and operate sensor tools dynamically through a language-tool co-
development pipeline. SensorMCP automates tool generation, en-
suring the tool set evolves alongside the LLM agent to meet user
requirements. For instance, a prompt like “monitor wildlife” trig-
gers the creation of a tailored object-detection tool, with feedback
refining both the tool and the LLM’s understanding. By integrating
sensor-specific language assets, SensorMCP enables LLMs to inter-
pret and act on complex sensor systems, enhancing precision and
usability.

In summary, this paper makes the following contributions:

(1) We propose a novel SensorMCP framework that enables
automated co-development of sensor tools and language
models, streamlining sensor system customization.

(2) We develop an automated sensor toolbox that generates cus-
tomized tools on demand based on specific user requirements
and contexts (e.g., for wildlife tracking, such as tigers and
lions).

(3) We design an automated language assets that produce tool
descriptions and linguistic modules, enabling LLMs to inter-
act seamlessly with sensors.

(4) We implement and evaluate a prototype using real-world zoo
datasets, demonstrating the system’s feasibility in realistic
scenarios.

These contributions advance the coevolution of sensor tools
and language in mobile sensing systems, aligning with Varela’s
enactivist pragmatism philosophy [29], which posits that cognition
arises from the bidirectional coupling of agents and their environ-
ments. To promote community collaboration and real-world deploy-
ment, we release SensorMCP’s code and real-world zoo datasets
through https://sensormcp.github.io/sensor-mcp/. This will facili-
tate sensor system applications such as wildlife monitoring, smart
home systems, and smart cities.

2 Related Work
Sensor Systems Customization. IoT frameworks like Home-
Assistant support customized automation for cameras and environ-
mental sensors [21]. However, their manual configuration limits
scalability for dynamic tasks like wildlife monitoring. Recent work

on edge IoT frameworks optimizes sensor deployment for tasks
such as activity tracking [15]. These systems enhance hardware
efficiency but lack LLM-driven tool generation, leaving a gap in
intelligent, automated sensor customization critical for applications
like tiger tracking for the end users.
LLM-Tool Interaction Frameworks. Frameworks like Tool-
LLM [17], HuggingGPT [22], TaskMatrix.AI [9], LLMind [4], enable
LLM agents to operate tools by chaining prompts and APIs [25].
Several existing toolchains, such as LangChain [25], provide con-
venient implementations of such functionality. Building upon this
paradigm, [12, 17] further explore better API selection strategies.
However, their ad-hoc integrations lack standardization for sen-
sor applications. TaskSense [10] proposes a sensor language de-
signed for operating the sensor tools through LLM interactions.
However, it is limited to the predefined tools. Open-source LLMs,
such as LLaMA [26], DeepSeek [5, 6], face similar integration chal-
lenges [26]. Other works, including ToolFormer [20], achieve this
by treating the function calls as a special kind of tokens to train
the model. However, these methods have limited scalability due to
their training overhead. The Model Context Protocol, introduced
by Anthropic in 2024 [3], standardizes LLM-tool communication
via JSON-RPC. Similarly, OpenAI’s Function Calling API [16] and
Google’s Agent2Agent (A2A) protocol [14] enable agentic tool in-
vocation. However, these frameworks are generic, lacking sensor-
specific automation or data semantics for IoT and mobile sensing.
AI-Driven Sensing. Foundationmodels, such as vision-language
models (VLMs) like CLIP, excel at general tasks like object recog-
nition from sensor data [18]. Multimodal LLMs for IoT integrate
data streams, such as video and audio [7], but their high computa-
tional demands make them infeasible for edge devices or long-term
sensing tasks [2]. Agentic systems like AutoGen orchestrate tasks
such as code generation [31], but they lack pipelines for generat-
ing executable sensor tools, limiting their applicability to sensing
domains.

Unlike prior work, SensorMCP integrates the standardizedModel
Context Protocol with a co-development pipeline to automate
sensor-specific tool generation and language asset development.
This approach bridges large language models and sensor systems,
enabling scalable customization for applications such as wildlife
monitoring and smart cities. By addressing limitations in existing
frameworks, Name advances AI-driven mobile sensing.

3 SensorMCP Design
The SensorMCP framework leverages the Model Context Protocol
(MCP) to enable LLM agents to dynamically generate and operate
sensor tools tailored to specific sensor applications, such as wildlife
monitoring, smart city, and home care systems. The framework’s
design comprises four key components: 1) a system architecture
with a co-development pipeline, 2) an automated sensor toolbox,
3) an automated language asset system, and 4) an MCP server-
client model. Working in concert, these components automate tool
creation and operation, enable LLM agents to interpret user require-
ments and generate appropriate sensor tool sets, and integrate tools
seamlessly with sensor hardware. The design prioritizes scalabil-
ity and adaptability, making SensorMCP a novel contribution to
AI-driven mobile sensing systems.

https://sensormcp.github.io/sensor-mcp/
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Figure 2: SensorMCP architecture.

3.1 System Overview
SensorMCP is an MCP server framework that enables LLMs to gen-
erate and operate sensor tools on demand while improving their
understanding of sensor contexts and operations. Unlike traditional
MCP implementations, which rely on predefined tools, SensorMCP
introduces a co-development pipeline that evolves tools and LLMs
in tandem. In this pipeline, an LLM issues a prompt (e.g., “moni-
tor tigers”), triggering SensorMCP to generate a tailored tool (e.g.,
tiger_tracker). The tool then provides feedback, such as perfor-
mance metrics, to enhance the LLM agent’s comprehension and
improve future tool designs. This iterative process ensures that
tools align with user requirements and that LLMs can operate them
effectively.

The SensorMCP architecture is a four-tier system, as depicted in
Figure 2:

• Host with MCP Client: An LLM application (e.g., Claude
Desktop or Cursor) that issues natural language prompts,
such as “monitor tigers.” The integrated MCP client trans-
lates these prompts into structured JSON-RPC requests and
manages tool discovery by querying the server’s tool reg-
istry.

• SensorMCP Server: Orchestrates tool generation and lan-
guage asset creation by controlling the Sensor Toolbox and
Language Asset system. It handles tool invocation, processes
feedback, and ensures seamless integration with sensor hard-
ware via APIs like create_tool and invoke_tool.

• Sensor Toolbox: Automates the generation of scenario-
specific tools, such as tiger trackers, from MCP requests,
producing trained models and function descriptions. It also
supports extensibility through compatibility with existing
sensor platforms like Home Assistant [21] and Mi-Home,
enabling integration with diverse IoT ecosystems.

• Sensor Language Asset: Maintains a dynamic repository of
tool descriptions and schemas, enhancing LLM understand-
ing of tool capabilities. It updateIns this “menu” of sensor
tools based on performance feedback, ensuring agents can
accurately invoke and interpret tool functions.

This architecture automates the entire tool creation process,
eliminating manual efforts and enabling rapid deployment for di-
verse sensing scenarios. The co-development pipeline is central to
SensorMCP’s innovation, ensuring tools are both functional and
interpretable by LLMs, a critical requirement for real-world mobile
sensing applications.

Table 1: Sensor Toolbox Examples

Input (MCP Request) Output (Tool) Function Description

{goal: "monitor",
subject: "tigers"}

Tiger Tracker track_video(): detect
tigers in real-time

{goal: "measure",
subject: "temp"}

Temp Logger log_temp(): record
temperature at intervals

3.2 Sensor Toolbox
In SensorMCP server, the Sensor Toolbox is an automated pipeline
that produces sensor tools on demand from the user and MCP host
requests, enabling scenario-specific tool creation without requiring
users to provide data or labels. It processes a structured MCP re-
quest, such as a JSON object {goal: "object monitor", subject: "tigers"},
to produce a fully functional tool, like a tiger tracker with a trained
model, deployment libraries, and function descriptions in the re-
turned output. Operating without manual intervention, the pipeline
ensures scalability across diverse sensor types and applications. Ad-
ditionally, it maintains a repository of predefined and generated
tools and machine learning modules, allowing users to access and
reuse them efficiently.

The pipeline consists of four sequential steps, as illustrated in
Figure 3:

(1) Data Engine: The data engine retrieves relevant data for
creating the tool based on the request. For example, a tiger
monitoring tool fetches tiger images from public datasets like
Roboflow [19] and Unsplash [28], ensuring domain-specific
training material.

(2) Foundation Model-Based Labeling: This module uses the
large machine learning models, such as YOLO-World [30],
Grounding DINO [11], annotates the collected data to iden-
tify relevant features (e.g., tigers in images), producing la-
beled datasets for training.

(3) Tool Generation: The pipeline trains a compact, efficient
model, such as YOLOv8, YOLOv10, and YOLOv11 [27, 30], op-
timized for real-time performance on resource-constrained
sensor hardware (e.g., Raspberry Pi).

(4) Tool Packaging: The trained model is bundled with meta-
data, including function descriptions (e.g., “tiger_
tracker: detect tigers, invoke via track_video”), enabling
MCP-compliant invocation.

The pipeline’s dynamic generation capability ensures that tools
are tailored to specific scenarios, such as zoo-based wildlife moni-
toring, without requiring predefined templates. Table 1 provides
examples of pipeline inputs and outputs.

Through automated tool creation, the Sensor Toolbox enables
SensorMCP to support diverse mobile sensing applications, from
environmental monitoring to object tracking, while maintaining
minimal manual operation and high adaptability.
3.3 Sensor Language Asset
Beyond tool generation, SensorMCP maintains a Sensor Language
Asset, a specialized dictionary that helps LLM agents understand
the tools and their functions. This asset automatically generates
and refines tool descriptions and schema, allowing LLM agents
to interact seamlessly with the generated tools. It solves a crucial
challenge: ensuring LLMs comprehend sensor-specific contexts,
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Figure 3: Automated tool generation pipeline.

such as the operational limitations of a tiger tracker. Specifically,
the Sensor Language Asset consists of three core components.

• Word Formation: Defines tool affordances and features
in natural language (e.g., “tiger_tracker: detects tigers in
real-time using camera input”).

• Grammar Formation: Generates operational schemas that
specify tool behavior (e.g., “[tiger_tracker] activates if [mo-
tion > threshold during daytime]”).

• Embedded Knowledge: Incorporates sensor data samples,
such as imagemetadata, to enhance LLM context understand-
ing (e.g., associating “tiger” with specific visual patterns).

The generation and refinement process begins when the Sensor
Toolbox generates a tool. The system automatically creates descrip-
tions and schemas based on the tool’s model, training data, and
metadata information. For instance, a tiger tracker’s model output
(e.g., bounding boxes) informs a schema such as “[tiger_tracker]
reports [detection] at [timestamp].” LLMs use these assets to invoke
tools and interpret their outputs, such as “tiger detected at 14:00.” A
feedback loop continuously refines these assets—tool performance
metrics (e.g., false positives) trigger updates to descriptions and
schemas, enhancing accuracy over time. These linguistic elements
correlate directly with sensor development modules, as shown in
Table 2: tool functions influence word formation, schemas align
with syntax, and performance metrics shape contextual narratives.

This automated approach ensures LLMs “speak” the language
of sensors, enabling precise tool operation and adaptation. By em-
bedding sensor context and refining assets dynamically, the system
enhances the co-development pipeline, making SensorMCP a robust
solution for AI-driven sensing.

Table 2: Correlation between sensor development modules
and linguistic elements in SensorMCP.

Sensor Mod-
ule

Linguistic
Element

Enactivist Relation

Tool
Functions

Word
Formation

Sensor tools shape metaphors:
“tracking” tigers mirrors
visual detection tasks.

Operational
Schemas

Grammar
Formation

Tool sequences inform syntax:
tool-action-object mirrors
prompt-tool-output.

Tool
Performance

Contextual
Narratives

Tool successes/failures drive
descriptions: e.g., “tiger
detected” logs refine usage.

Embedded
Knowledge

Pragmatic
Context

Tool metadata creates jargon;
jargon guides tool invocation
(e.g., “track_video”).

Table 3: SensorMCP Server APIs

API Call Description

create_tool(goal,
subject)

Generates a new tool based on re-
quest parameters

list_tools() Returns available tools in the registry
invoke_tool(tool_name,
params)

Executes a tool with given parame-
ters

3.4 MCP Server and Client
The SensorMCP server and client form the backbone of tool gener-
ation and invocation, integrating the toolbox and language assets
into a cohesive system. The server exposes these components via
MCP’s JSON-RPC interface, supporting two primary operations:

• Tool Generation: Processes requests like create_tool(
goal="monitor",subject="tigers") to trigger the Sen-
sor Toolbox pipeline.

• Tool Invocation: Executes commands like invoke_tool(
"tiger_tracker") on sensor hardware.

The server supports both local sensors (via stdio) and remote
sensors (via HTTP with Server-Sent Events[SSE]), ensuring flex-
ibility across deployment scenarios. It maintains a dynamic tool
registry that updates in real-time when new tools are generated,
and it enforces security scopes to restrict LLM access, for example,
making sensor data read-only.

The client converts LLM prompts into server requests by trans-
lating natural language commands (e.g., “monitor tigers”) into struc-
tured APIs (e.g., create_tool). It dynamically discovers available
functions by querying the tool registry. Table 3 presents these two
categories of server APIs.

This design ensures seamless integration of generated tools and
language assets, enabling LLMs to operate sensors with minimal
overhead. The server-client model, combined with the automated
pipeline and language system, positions SensorMCP as a scalable
framework for mobile sensing applications.
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Figure 4: Prototype workflow of SensorMCP: a “monitor
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livering an object detection model to a programmable smart
camera. The camera processes live feeds and visualizes de-
tected tiger or lion events.

4 Implementation and Evaluation
To demonstrate the feasibility of SensorMCP, we developed a pro-
totype implementation and conducted a preliminary evaluation
using real-world data collected from a zoo. This section describes
the prototype setup, including the tools generated and the work-
flow, followed by an evaluation of tool generation accuracy and
sensor effectiveness. Our results highlight SensorMCP’s potential
to enable dynamic, AI-driven sensing.
4.1 Implementation
We implemented the SensorMCP server in Python, leveraging an
open-source MCP SDK to handle client-server communication via
JSON-RPC over HTTP. The prototype comprises four components:
the host LLM, MCP client, SensorMCP server, and sensor hardware.
For the host LLM, we used an open-source tool FastAgent [23],
interfaced through an MCP client that translates natural language
prompts into server requests. The SensorMCP server automates
tool generation, exposing interfaces including create_tool and
invoke_tool built based on FastMCP [13]. To collect real-world
data, we deployed three smart cameras in a zoo over one month.

Two example tools were generated to validate the system: a tiger
tracker and a lion tracker, both based on object detection. These
trackers process camera feeds using a distilled YOLOv10 model
trained on real-world zoo images. Each tool continuously analyzes
incoming frames to detect and track tigers or lions in real time. The
workflow follows a prompt-driven pipeline: a user inputs a request
(e.g., “monitor tigers” or “monitor lions”), the LLM generates a tool
specification, the SensorMCP server produces the tool – including

Table 4: SensorMCP Evaluation: Wildlife Tracking

Test Case Success (%) Precision/Recall (%) Time

Tiger Tracking 95 96.9 / 85.8 27m 13s
Lion Tracking 90 93.9 / 86.7 27m 5s

Table 5: Impact of Tool Customization

Test Case Method Precision (%) Recall (%)

Tiger Tracking Pre-trained only 88.7 68.9
SensorMCP 96.9 85.8

Lion Tracking Pre-trained only 82.1 47.9
SensorMCP 93.9 86.7

the detection model, metadata, and deployment setup in Python
environment – and the tool is then deployed on the hardware for
execution.

Figure 4 illustrates the prototype workflow, showing a tiger
or lion tracker in action: a prompt triggers tool generation, the
server delivers a motion-detection model to process the video feed,
displaying detected events. This setup demonstrates SensorMCP’s
ability to automate tool creation and integrate LLM agents with
sensor hardware seamlessly.
4.2 Evaluation
We evaluated SensorMCP across two dimensions: tool generation
success rate and sensor effectiveness, using real-world data col-
lected from a zoo to ensure realism. Our methodology focused on
two test cases for tiger and lion monitoring. The datasets comprised
video footage captured by three smart cameras over one month in
a zoo under varying conditions (e.g., daytime and nighttime).
Tool Generation Success Rate. Wemeasured the success rate of
generating tools that match user prompts. Across 40 test prompts
(e.g., “monitor tigers”), we assessed whether the generated tool
correctly implemented the requested functionality. For instance, a
“monitor tigers” or “monitor lions” prompt should yield a motion-
detection tool with a YOLOv10 model configured for tiger or lion
recognition, respectively.
Tool Effectiveness. We assessed the quality of the tool output,
focusing on the precision and recall of the tiger and lion track-
ers. Tests were conducted using real-world zoo scenarios, such as
varying lighting conditions and angles for tiger and lion tracking.
Metrics. Evaluation metrics included: 1) Tool success rate: Per-
centage of prompts yielding functional tools. 2) Precision and Recall:
Performance of tools generated by theMCP server. 3) Latency: Time
for tool generation and invocation via the MCP server.

Results are summarized in Table 4. Across 40 prompts, Sen-
sorMCP achieved a 95% tool success rate for tiger tracking, with
38 tiger tracking tools correctly matching user intent (e.g., tiger
trackers detecting motion as specified). The tiger tracker exhibited
a 96.89% precision rate and 85.82% recall rate. Latency averaged 26
minutes and 52 seconds for tool generation and 21 seconds for invo-
cation, suitable for real-time applications. Results for tiger tracking,
based on real-world data, suggest SensorMCP’s viability, though
performance depends on prompt clarity and data quality.
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To assess the impact of sensor tool customization enabled by
SensorMCP, we conducted a comparative evaluation between pre-
trained models and our system’s auto-generated tools. The pre-
trained models consisted of a YOLO model trained on the general-
purpose Open Image [8] dataset, while our approach leveraged
task-specific data during tool generation. As shown in Table 5, our
tools significantly outperformed the generic ones, achieving over
8.2% higher precision and 16.9% higher recall in the monitoring
tasks. These results validate the effectiveness of custom models
with context-specific sensor observations.

5 Conclusion and Future Work
This paper introduces SensorMCP, a novel framework that leverages
the Model Context Protocol to enable LLM agents to dynamically
generate and operate sensor tools. By integrating an automated
sensor toolbox and sensor language assets, SensorMCP stream-
lines the creation of custom tools for various applications. Our
prototype demonstrates the feasibility of this approach, achieving
promising results in scenarios such as tiger tracking with a 95% tool
success rate. SensorMCP simplifies the development of tailored sen-
sor systems. Its co-development pipeline ensures that tools evolve
alongside LLMs, enhancing adaptability and precision in real-time
sensing tasks.

Future work will focus on integrating with existing sensor op-
eration platforms like Home Assistant [21] to support commands
such as “help me monitor my dog’s diet” and facilitate hardware
customization requests like “help me build a pet companion that
looks like a toy duck.”

Acknowledgment
This work was partly supported by the Hong Kong Research Grants
Council (RGC) under the Theme-based Research Scheme (Grant
Number: T43-513/23-N).

References
[1] Siddharth Ahuja. 2025. BlenderMCP: Blender Integration through the Model

Context Protocol. https://github.com/ahujasid/blender-mcp Accessed: 2025-04-
15.

[2] Tianyi Bai, Hao Liang, Binwang Wan, Yanran Xu, Xi Li, Shiyu Li, Ling Yang,
Bozhou Li, Yifan Wang, Bin Cui, Ping Huang, Jiulong Shan, Conghui He, Binhang
Yuan, and Wentao Zhang. 2024. A Survey of Multimodal Large Language Models
from a Data-centric Perspective. arXiv preprint arXiv:2405.16640 (2024). https:
//doi.org/10.48550/arXiv.2405.16640

[3] Model Context Protocol Contributors. 2024. Model Context Protocol (MCP):
Specification and SDKs. Model Context Protocol. https://github.com/
modelcontextprotocol

[4] Hongwei Cui, Yuyang Du, Qun Yang, Yulin Shao, and Soung Chang Liew. 2024.
Llmind: Orchestrating ai and iot with llm for complex task execution. IEEE
Communications Magazine (2024).

[5] DeepSeek-AI. 2024. DeepSeek-V3 Technical Report. https://arxiv.org/abs/2412.
19437.

[6] DeepSeek-AI. 2025. DeepSeek-R1: Incentivizing Reasoning Capability in LLMs
via Reinforcement Learning. https://arxiv.org/abs/2501.12948.

[7] Difei Gao, Yiwen Liu, Zixuan Zhang, Binfeng Jin, Zhendong Chen, Wenhao Dai,
Yu Yang, Yi Wang, Hang Zhang, and Zhao Yang. 2024. Mini-InternVL: A Flexible-
Transfer Vision-Language Model for IoT Sensing. arXiv preprint arXiv:2408.15254
(2024). https://doi.org/10.48550/arXiv.2408.15254

[8] Alina Kuznetsova, Hassan Rom, Neil Alldrin, Jasper Uijlings, Ivan Krasin, Jordi
Pont-Tuset, Shahab Kamali, Stefan Popov, Matteo Malloci, Alexander Kolesnikov,
Tom Duerig, and Vittorio Ferrari. 2020. The Open Images Dataset V4: Unified
image classification, object detection, and visual relationship detection at scale.
International Journal of Computer Vision (IJCV) (2020).

[9] Yaobo Liang, Chenfei Wu, Ting Song, Wenshan Wu, Yan Xia, Yu Liu, Yang Ou,
Shuai Lu, Lei Ji, Shaoguang Mao, et al. 2024. Taskmatrix. ai: Completing tasks
by connecting foundation models with millions of apis. Intelligent Computing 3

(2024), 0063.
[10] Kaiwei Liu, Bufang Yang, Lilin Xu, Yunqi Guo, Guoliang Xing, Xian Shuai, Xiaozhe

Ren, Xin Jiang, and Zhenyu Yan. 2025. TaskSense: A Translation-like Approach
for Tasking Heterogeneous Sensor Systems with LLMs. In Proceedings of the 23rd
ACM Conference on Embedded Networked Sensor Systems. 213–225.

[11] Shilong Liu, Zhaoyang Zeng, Tianhe Ren, Feng Li, Hao Zhang, Jie Yang, Qing
Jiang, Chunyuan Li, Jianwei Yang, Hang Su, et al. 2024. Grounding dino: Marry-
ing dino with grounded pre-training for open-set object detection. In European
Conference on Computer Vision. Springer, 38–55.

[12] Zhaoyang Liu, Zeqiang Lai, Zhangwei Gao, Erfei Cui, Ziheng Li, Xizhou Zhu,
Lewei Lu, Qifeng Chen, Yu Qiao, Jifeng Dai, et al. 2024. Controlllm: Augment
language models with tools by searching on graphs. In European Conference on
Computer Vision. Springer, 89–105.

[13] Jonathan Lowin. 2025. FastMCP: A Pythonic Framework for Building MCP
Servers and Clients. https://github.com/jlowin/fastmcp. Accessed: April 18,
2025.

[14] MarkTechPost Team. 2025. Google Introduces Agent2Agent (A2A): A New
Open Protocol that Allows AI Agents Securely Collaborate Across Ecosystems.
https://www.marktechpost.com/2025/04/04/google-introduces-agent2agent-
a2a-a-new-open-protocol-that-allows-ai-agents-securely-collaborate-across-
ecosystems-regardless-of-framework-or-vendor/

[15] Shentong Mo, Russ Salakhutdinov, Louis-Philippe Morency, and Paul Pu Liang.
2024. IoT-LM: Large Multisensory Language Models for the Internet of Things.
arXiv preprint arXiv:2407.09801 (2024). https://doi.org/10.48550/arXiv.2407.09801

[16] OpenAI Team. 2024. Function Calling with OpenAI API. https://platform.openai.
com/docs/guides/function-calling

[17] Yujia Qin, Shihao Liang, Yining Ye, Kunlun Zhu, Lan Yan, Yaxi Lu, Yankai Lin, Xin
Cong, Xiangru Tang, Bill Qian, et al. 2023. Toolllm: Facilitating large language
models to master 16000+ real-world apis. arXiv preprint arXiv:2307.16789 (2023).

[18] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh,
Sandhini Agarwal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark,
Gretchen Krueger, and Ilya Sutskever. 2021. Learning Transferable Visual Models
From Natural Language Supervision. In Proceedings of the 38th International
Conference on Machine Learning (ICML). 8748–8763. https://doi.org/10.48550/
arXiv.2103.00020

[19] Roboflow. 2025. Roboflow Universe: Open Source Computer Vision Datasets and
Models. https://universe.roboflow.com. Accessed: 2025-04-15.

[20] Timo Schick, Jane Dwivedi-Yu, Roberto Dessì, Roberta Raileanu, Maria Lomeli,
Eric Hambro, Luke Zettlemoyer, Nicola Cancedda, and Thomas Scialom. 2023.
Toolformer: Language models can teach themselves to use tools. Advances in
Neural Information Processing Systems 36 (2023), 68539–68551.

[21] Paulus Schoutsen and the Home Assistant Community. 2024. Home Assistant:
Open Source Home Automation. Open Home Foundation. https://www.home-
assistant.io/

[22] Yongliang Shen, Kaitao Song, Xu Tan, Dongsheng Li, Weiming Lu, and Yueting
Zhuang. 2023. Hugginggpt: Solving ai tasks with chatgpt and its friends in
hugging face. Advances in Neural Information Processing Systems 36 (2023),
38154–38180.

[23] Shaun Smith. 2025. FastAgent: Define, Prompt, and Test MCP-Enabled Agents
and Workflows. https://github.com/evalstate/fast-agent. Accessed: April 18,
2025.

[24] Tevon Smith. 2025. HomeAssistant-MCP: Model Context Protocol Server for
Home Assistant. https://github.com/tevonsb/homeassistant-mcp Accessed:
2025-04-15.

[25] LangChain Team. 2024. LangChain: Framework for LLM-Powered Applications.
LangChain Inc. https://github.com/langchain-ai/langchain

[26] Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne
Lachaux, Timothée Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal
Azhar, Aurelien Rodriguez, Armand Joulin, Edouard Grave, and Guillaume Lam-
ple. 2023. LLaMA: Open and Efficient Foundation Language Models. arXiv
preprint arXiv:2302.13971 (2023). https://doi.org/10.48550/arXiv.2302.13971

[27] Ultralytics. 2025. Ultralytics YOLO11: A State-of-the-Art Object Detection Frame-
work. https://github.com/ultralytics/ultralytics. Accessed: 2025-05-11.

[28] Unsplash. 2025. Hermosas imágenes y fotos gratuitas. https://unsplash.com/es
Retrieved May 10, 2025.

[29] Francisco J. Varela, Evan Thompson, and Eleanor Rosch. 2017. The EmbodiedMind:
Cognitive Science and Human Experience (revised ed.). MIT Press, Cambridge,
MA. https://doi.org/10.7551/mitpress/9780262529365.001.0001

[30] Ao Wang, Hui Chen, Lihao Liu, Lin Song, Jungong Han, and Guiguang Ding.
2024. YOLOv10: Real-Time End-to-End Object Detection. arXiv preprint
arXiv:2405.14458 (2024). https://arxiv.org/abs/2405.14458

[31] Qingyun Wu, Gagan Bansal, Jieyu Zhang, Yiran Wu, Shaokun Zhang, Erkang
Zhu, Beibin Li, Li Jiang, Xiaoyun Zhang, and Chi Wang. 2023. AutoGen: Enabling
Next-Gen LLM Applications via Multi-Agent Conversation Framework. arXiv
preprint arXiv:2308.08155 (2023). https://doi.org/10.48550/arXiv.2308.08155

[32] Edward Z. Yang. 2025. codemcp: Coding Assistant MCP for Claude Desktop.
https://github.com/ezyang/codemcp Accessed: 2025-04-15.

https://github.com/ahujasid/blender-mcp
https://doi.org/10.48550/arXiv.2405.16640
https://doi.org/10.48550/arXiv.2405.16640
https://github.com/modelcontextprotocol
https://github.com/modelcontextprotocol
https://arxiv.org/abs/2412.19437
https://arxiv.org/abs/2412.19437
https://arxiv.org/abs/2501.12948
https://doi.org/10.48550/arXiv.2408.15254
https://github.com/jlowin/fastmcp
https://www.marktechpost.com/2025/04/04/google-introduces-agent2agent-a2a-a-new-open-protocol-that-allows-ai-agents-securely-collaborate-across-ecosystems-regardless-of-framework-or-vendor/
https://www.marktechpost.com/2025/04/04/google-introduces-agent2agent-a2a-a-new-open-protocol-that-allows-ai-agents-securely-collaborate-across-ecosystems-regardless-of-framework-or-vendor/
https://www.marktechpost.com/2025/04/04/google-introduces-agent2agent-a2a-a-new-open-protocol-that-allows-ai-agents-securely-collaborate-across-ecosystems-regardless-of-framework-or-vendor/
https://doi.org/10.48550/arXiv.2407.09801
https://platform.openai.com/docs/guides/function-calling
https://platform.openai.com/docs/guides/function-calling
https://doi.org/10.48550/arXiv.2103.00020
https://doi.org/10.48550/arXiv.2103.00020
https://universe.roboflow.com
https://www.home-assistant.io/
https://www.home-assistant.io/
https://github.com/evalstate/fast-agent
https://github.com/tevonsb/homeassistant-mcp
https://github.com/langchain-ai/langchain
https://doi.org/10.48550/arXiv.2302.13971
https://github.com/ultralytics/ultralytics
https://unsplash.com/es
https://doi.org/10.7551/mitpress/9780262529365.001.0001
https://arxiv.org/abs/2405.14458
https://doi.org/10.48550/arXiv.2308.08155
https://github.com/ezyang/codemcp

	Abstract
	1 Introduction
	2 Related Work
	3 SensorMCP Design
	3.1 System Overview
	3.2 Sensor Toolbox
	3.3 Sensor Language Asset
	3.4 MCP Server and Client

	4 Implementation and Evaluation
	4.1 Implementation
	4.2 Evaluation

	5 Conclusion and Future Work
	References

