Sign-to-911: Emergency Call Service for Sign Language Users with Assistive AR

- Yungi Guo*, Jinghao Zhao*, Boyan Ding*, Congkai Tan*, Weichong Ling*, Zhaowei Tan⁺, Jennifer Miyaki[‡], Hongzhe Du^{*}, Songwu Lu^{*}
 - *UCLA Computer Science, *UC Riverside, *UCLA Linguistics
 - ASL Interpreter: Zachary Goldstein

Background: Deaf and Sign Language

Global

• > 70M people are deaf [1]

In the US

- **15%** (~37.5 million) of adults have some trouble hearing [2]
- **0.5-2M** primarily communicate using sign language [3]
- American Sign Language (ASL) is a natural language with distinct vocabularies and grammars

[1] Deafness And Hearing Loss Statistics

[2] Blackwell DL, Lucas JW, Clarke TC. Summary health statistics for U.S. adults: National Health Interview Survey, 2012 (PDF). National Center for Health Statistics. Vital Health Stat 10(260). 2014. [3] Mitchell, Ross E., et al. "How many people use ASL in the United States? Why estimates need updating." Sign Language Studies 6.3 (2006): 306-335.

2

Communication Barrier

- Lack of interpreter: 1 ASL interpreter per 50 deaf individuals [1].
- **First step:** support emergency communication

This topic is suggested by my Deaf friend, Mark.

[1] <u>https://deafservicesunlimited.com/asl-interpreter-shortage-and-accessibility-in-higher-education/</u>

Communication Upon Emergencies

- **Our user survey (54 responses from Deaf community)**
- 96% face challenges to reach emergency services.

Current Emergency Services for Deaf People

- Text-based communication

- Not all deaf people are fluent in English

- Video relay services (VRS)

- Requires network and human interpreters

Text-to-911

VRS

How to Provide Accessible Sign Emergency Services?

Goals

- Accessible: easy to use and carry
- **Bi-directional**: ASL \leftrightarrow Spoken English

- Standalone: No dependency on remote processing or connectivity

Core Ideas

- **1. Leverage ASL linguistic features**
- Exploit mobile, wearable computing, and smaller models 2.
- 3. Working with the Deaf community

Sign-to-911 System Overview

- **AR Glasses:** capturing and displaying signs
- **Smartphone:** processing and voice call interface
- **Connection in between:** Bluetooth (150KB/s) •

Render ASL Signs on Glasses

Why AR Glasses?

Bi-directional Capability

Accessibility:

- Compact and non-intrusive
- Keeps hands free for signing
- Already used by deaf people for live captions [1]

Assistive AR glasses (~\$350)

System Functions

1. ASL-to-English: Fast and Accurate Sign Translation

2. English-to-ASL: Efficient Production & Rendering from English

ASL-to-English: Domain-Oriented Translation

ASL-to-English translation steps

Step 1: Capture sign with sign parameters

From Ling. Parameters to ML Parameters

[1] Tennant, R. A., Gluszak, M., and Brown, M. G. The American sign language handshape dictionary. Gallaudet University Press, 1998.

Modified parameters for ML

- 1. Hand number: probabilities, 1 or 2 handed
- 2. Handshape: probabilities of 40 basic handshape
- **3. Wrist trajectory:** (x, y, z) over time
- **4.** Palm orientation: (α, β, γ) over time

Captured through glasses

How to Extract Sign Parameters?

1. Hand recognition

Offload processing to the phone

2. Segmentation

Pause time and hand neutral hand position

3. Adaptive Extraction

Merge handshape: 1) classify handsh with NN; 2) keep start/end handshape

٦	a	р	e
E	2S)	

Parameter	Dimension #
Hand number	2
Handshape	40 x 2
Wrist trajectory	3 x 2 x t
Palm orientation	3 x 2 x t

Sign Parameter Dimensions

Step 2: Sign Recognition from Parameters

Sign categorization: Signs are classified along five hierarchical dimensions **a**)

E.g., Movement Trajectory \rightarrow Pattern

Recognize signs: b)

DTW + Regression model to learn sign parameter weights to classify signs

• UCLA •

Direction Unidirectional Repeated			
Non-dominant hand Dynamic Static			
Handshape Same Different			
Pattern Symmetric Parallel Alternate			
Optional for 2-Handed			

Sign Categories

Step 3: Sentence Translation

- ASL grammar rules differ from that of English.
- **Example:**
 - English: I have a fire emergency. (Subject-Verb-Object, SVO) ASL: FIRE EMERGENCY I HAVE. (Object-Subject-Verb, OSV)

I have fire emergency

Sentence Translation with Grammar Tree

- Learn from samples
 - 1233 pairs: [ASL Gloss Seq., English]
- Sentence translation
 - Parse and map with the tree structures
- Leveraging 911 contexts to refine recognition
 - Emergency type & questions

Grammar Mapping

English-to-ASL: Phoneme-based ASL Production

Phonemes are basic unit in ASL[1], contains

- **HOLD:** Static gestures; 1 to 5 per sign
- **MOVE:** Transition between two HOLD states

Phoneme extraction: Motion capture from sign videos

Up to 50x bandwidth reduction with kinematic compressions

\rightarrow Work with Bluetooth setup

[1] Liddell, Scott K., and Robert E. Johnson. "American sign language: The phonological base." *Sign language studies* 64.1 (1989): 195-277.

Implementation

Commodity Devices:

- **Glasses:** INMO AIR priced at \$350.
- **Smartphone:** Android OS, ranging from \$200 to \$550.

Voice call captured with Android Accessibility APIs.

Glass App

Datasets

Glass-view Sign Traces

• 911 conversations from multiple resources

D1 & D2: Derived from **real-world eme**

D3: 911 recordings and ChatGPT synth

- By authentic Signers*: 2 native ASL researchers
- Data size: 249 GB video traces; 11.5

ASL production

• 3000+ signs from video samples

* UCLA IRB #: 23-000239

Glass-view collection

System Evaluation

- **Sign Capture and Sentence Translation:**
- **Accrete:** Achieved +5.1% word acc. improvement
- **End-to-end Latency:**
- **A2E:** 0.55s; 17x reduction from other models on mobile;7x reduction from cloud processing
- **E2A:** 0.21s; >15x reduction from skeleton/video streaming

Overhead: at the level of video players

User Study

Participants:

- 12 from CSUN, GLAD, and UCLA, and local communities
- Age Demographics: Spanning ages 20 to 80.

Approach	Accs.	Usab.	Ov
Text-based	2.9	2.8	2.
VRS	3.4	3.5	3.
Sign-to-911	4.2	4.3	4.

QoE from User Study

Sign-to-911

- Introducing bi-directional ASL interaction through Assistive AR

Solutions oriented from linguistic domain: it's lightweight, efficient, and accurate

Keep in Mind

- Must address the needs, wants, and concerns of the Deaf community
- **Linguistic diversity** of the Deaf community
 - > 200 sign languages in the world
 - The US has other sign language and varieties, e.g., SEE, Black ASL

Thank you!

Stay tuned: <u>AnySign.net</u> Turning Accessibility into Action!

Contact: linktr.ee/yqguo

